CIRCULATION COPY

SUBJECT TO RECALL _
EKS
IN TWO WE UCRL- 83910
PREPRINT

The SCALD Timing Verifier:
A New Approach to Timing Constraints
in Large Digital Systems

Thomas M. ¥McWilliams

This paper was prepared for submittal to:
IEEE Transactions on Circuits and Systems

January, 1980

This is a preprint of a paper intended for publication in a journal or proceedings. Since
changes may be made before publication, this preprint is made available with the un-
derstanding that it will not be cited or reproduced without the permission of the author.

Publication Information
This article was published in the _Proceedings of the 1980 IEEE International Symposium on Circuits and Systems (II)_, Houston, TX 28 - 30 April 1980; p. 415-23.

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government nor the
University of California nor any of their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States
Government or the University of California, and shall not be used for advertising
or product endorsement purposes.

The SCALD Timing Verifier: A New Approach to
Timing Constraints in Large Digital Systems

Thomas M. McWilliams

Lawrence Livermore Laboratory
University of California

and

Computer Science Department
Stanford University

ABSTRACT

A new approach to the verification of the timing
constraints on large digital systems has been developed. The
algorithm is computationally very efficient and aiso provides
the early and continuous feedback about the timing aspects of
synchronous sequential circuits as they are designed. It also
allows for the design to be conveniently verified in sections,
permitting the verification of designs which would otherwise be
too large to do on existing computer systems. A system using

this algorithm has been implemented, and has been used to

verify the timing constraints on the design of the S-1 Mark IIA
processor, which consists of 10,000 ECL chips, and is
comparabie in performance to the Cray-1 CPU.

INTRODUCTION

The SCALD Timing Verifier takes in the design of a
synchronous sequential system given in the SCALD hardware
description language, and analyzes the circuit, searching for
timing errors. SCALD (Structured Computer Aided Logic
Design) is a complete CAD system that inputs a graphics-based,
hierarchical description of a design, and generates a complete
set of low level documentation and magnetic tapes to impiement
the design [2,34] The Timing Verifier does a complete timing
verification based on the minimum and maximum propagation
delays of the circuit components, their set-up and hold times,
minimum pulse width constraints, and wire delays.

One of the main features of the SCALD Timing Verifier
is the ability to verify designs by modules. This not only
permits the use of computers with limited memory size, but also
allows timing constraints to be checked as a design progresses,
on a day-by-day basis. This is particularly important in that it
allows timing errors to be corrected before they have a chance
to propagate their effects throughout the design, or to induce
major design changes late in the design. It also supports an
accurate estimation of the cycle time of a machine before the
design is completed.

PREVIOUS APPROACHES .

There have been a number of previous approaches to the
verification of timing constraints in digital systems; these can be
grouped into two main categories: logic simulation [1,5] and
worst-case path analysis [6]

The logic simulation approach poses several problems. It
requires either a complete design including any microcode and

diagnostics, or some way of generating patterns to drive the
undefined signais. Waiting until the design is completed to
start simularion presents the problem that bugs are not found
until late in the design cycle. Generating patterns to drive
undefined signais is very time-consuming and difficul,
especially when the patterns need to go through the “worst-case”
set of states. Simulation is also a very inefficient way of finding
tming errors, because of the need to run through a large
number of states in order to test all of the “worst-case” timing
paths. In fact, for most large digital systems, it is impossible to
have a high degree of confidence that the worst-case states
have all been tested, and both the human and computational
efforts required to do simulation is orders of magnitude greater
than that required by the Timing Verifier

The worst-case path analysis approach examines all
paths through the combinational logic between registers or
latches, searching for the longest and shortest paths. This
approach only works on fairly simple combinational logic, and
tends to fall down on complex synchronous sequential circuits.
It is also computationally expensive, but does provide feedback
to the designer early during the design cycle, without the need
to generate detailed test patterns.

In contrast, the SCALD Timing Verifier eliminates most
of the problems associated with these approaches, allowing the
design to be verified as it proceeds, without the need to
generate complex complex test patterns. It also uses a
computationally efficient algorithm to cover all of the states
needed to identify and quantitate all timing errors. Handling
circuits where logic simulation of parts of the circuit is needed
to understand the detailed timing is another of its capabilities.

A NEW APPROACH

A new approach to verifying satisfaction of timing
constraints on large digital systems will be described here. This
system operates on synchronous sequential systems, and checks
all of the logic level timing errors which occur within those
system. These include the non-satisfaction of the set-up, hold,
or minimum pulse width time requirements for registers, latches,
and other complex funcrions. In addition to these errors, it
checks the timing on control signals which are ANDed with
clock signals, to verify that they are stable while the clock is
asserted, in order to avoid any possible bogus specification of
control-conditioned clock hnes. The Timing Verifier takes into
account both the minimum and maximum propagation delay of

<

all of the system’s components and of the interconnections
between them.

Theory of the Timing Verifier

Within synchronous sequential drouits, most signals can
only be changing during particular parts of the clock
For example, it may be possible for a particular signal o be
changing only during the second half of the clock cycle, given
that ail of the components making up the system are within
their timing specifications.

around the point at which it is clocked. The output of a gate
driven from this register can then be changing only during a
period of time determined by its propagation delay and when
the output of the register is changing.

Determining when a given signal may be changing and
when it is stable within the clock period is the key step for the
Timing Verifier. Once this has been done, it is relatively easy
to check all of the timing constraints placed on the circuit. For
instance, in order to check the set-up and hold times on a
register, all the Timing Verifier has to do is to see if its input
couid be changing at a time that it might be clocked.

If the timing of the drcuit never depended on the values
of signals, but merely on when they were changing or stable, the
Timing Verifier would be very simple. Clock signals have a
value which is periodic, and have the same value every cycle, 30
they are easy to handle. The signals which are difficuit to treat
are those whose values effect the circuit timing, and which have
different values during different cycles of the drcuit For
example, a control signal which determines whether a register is
clocked during 2 given cycle affects whether the output of the
register might change that cycle. If the circuit counts on the
register not changing every cycle, then the Timing Verifier
must do case analysis to keep from generating false error
messages. This requires the Timing Verifier to check the type
of cycle when the control signal is true, and to check the type of
cycle when it is false. This is potentially a very time-consuming
process, but it has turned out not to be. This is because most
signals have a “worst-case” state. For exampie, the worst-case
for most registers is to assume that they are clocked every cycle.
Only in those situations where both the clocked and unclocked
cases need to be checked separately does the Timing Verifier
have to compute both of them. In those cases, the Timing
Verifier remembers the values of all the signals which are not
affected by the signal which is having case analysis done on i,
and thus has to recompute only the signals which change with

the signal being analysed.

For a given circuit, the Timing Verifier has some number
of cases to analyze. Which signals require case analysis and
what cases need to be evaluatedare specified by the designer. It
has been found that most circuits have a fairly small number of
these cases which need to be analyzed.

The basic procedure for the Timing Verifier is then to
take the first case, and to calculate for each signal in the system
when it could be changing during the clock cycle. Once it has
done this, it checks for possible violation of timing constraints

for that case. It then goes on to the next case to be checked,
only recomputing those signals which are different from the
first case, and checking for any possible timing errors in that
case. Continuing this process, it checks all of the cases, thereby
performing a complete check of the circuit for timing constraint
violations.

Circuit Perjod

The circuit being verified must contain one basic clock,
whose period is specified to the Timing Verifier. If different
parts of the circuit being verified run at different clock rates,
then the period specified to the Timing Verifier is the least
common multiple of the different clock periods. For example, a
processor: might have an instruction unit that has a period of
30 nsec and an execution unit that has a period of 15 nsec. In
this case, the period specified to the Timing Verifier would be
30 nsec. Clock signals which occur within the circuit may occur
at any phase with the basic clock period.

Circuit Mode]

Circuits are described to the Timing Verifier in terms of
gates, registers, Jaches, set-up and hold constraints, and
minimum pulse width constraints More complex functions are
then defined in terms of these primitives, through the use of’
graphic-based macros, using the SCALD Hardware Description
Language (2,31

The following sections define the values that are used to
represent the behavior of signals, and the definitions of the
primitive components for these possible values.

Valye System Used To Represent Signals. At any instant, each
and every signal in the circuit has one of seven valuex

Yalye Meaning

0 false, or zero

1 true, or one

S or STABLE signal is stable, ie, not changing

C or CHANGE signal may be changing

R or RISE signal is going from a zero to 2 one

F or FALL signal is going from a one to a zero
U or UNKNOWN initial value used for all signals

Signal Values

The value of a signal the clock period is represented by a
linked list, each node of which specifies a value and the
duration of that value. The sum of the durations of all the
nodes in the list must equal the period of the circuit being
analyzed.

When a signal propagates through a gate or wire where
it is delayed by a variable amount of time, then skew is added
to the signal, representing the uncertainity in when the signal
will subsequently change. This skew is maintained separately
in the representation of the signal to preserve information
about the width of pulses in the signal, in order to avoid bogus
timing errors asserting that minimum pulse width requirements

S

have not been met If two or mare changing signals are
combined, the skew then cannot be simply represented
separately. It is therefore into the

representation by using the CHANGE, RISE, and FALL
values.

Definition of Combinational Functions. This section defines the
basic combinational functions used by the Timing Verifier. All
other combinational functions are then defined in terms of a
combination of these definitions.

The foliowing tables define the INCLUSIVE-OR (OR),
EXCLUSIVE-OR (XOR), AND, CHANGE (CHG), and
NOT functions for the seven value logic systern used in the
Timing Verifier.

AORB

B—~8 1 S CRFU
A
4
] 81 SCRFU
1 1111111
S S$1 SCRFU
c ci1cccecu
! R1IRCRCU
F F1LFCCFU
u viuvuvuguuy

Figure 1

Definition of inclusive-or function

A AND B

B—+08 1 S CRF U
A
i
8 2 9 2 0 8 8 B
1 81 SCRFU
S 8 S SCRFU
c s ccceccCcu
R 8 R RCRCU
F 8 F FCCFWU
u g U UuUuUuUy

Figure 2

Definition of and function
A XOR B

B8 1 SCRFU
A
* 81 S CRFU
1 1 8BS CFRU
S s s scececu
c ccccececececu
R R FCCCTCWU
F FRCCCTCU
U Uuuvuvuuuyuu

Figure 3

Definition of exclusive-or function

ACHG B
B8 1 S CTRFU
A
4
8 s s§sccecu
1 $ssscccCcu
S ssscccu
c cccceccu
R cccccecu
F ccccececocu
u UuUuuvuuUuuyuuuy

Figure 4
Definition of cAange function

NOT A

A —

.

@ 1

1]

S S

€ c

R F

F R

u u

Figure -5

Definition of not function

The output of the CHANGE function has the value
CHANGE if any of its inputs are changing: otherwise it has
the value STABLE. It is a useful function in modeling
complex combinational logic, where the actual function being
performed is not important to the verification process
Common examples are in the modeling of parity trees and
adders, for which the Timing Verifier cares only when the
outputs of these circuits are changing, not for their actual value.

Definition of Registers and Latches. The Timing Verifier has
two models for registers, which are shown in Figure 6. The
first register model just has “CLOCK” and “DATA" inputs,
and can only change its output on the rising-edge of its
“CLOCK" input. The output of the register will be set to the
“CHANGE" state between the time determined by the minimum
and maximum delays of the register following the rising-edge
of "CLOCK", Unless the “DATA" input is a true or false
during the rising-edge of the "CLOCK" input, the output will
be set to the “STABLE" value for the rest of the cycle
otherwise, it will be set to the value of the “DATA” input. The
example shows a minimum delay of 1.0 nsec and a2 maximum
delay of 3.8 nsec being specified for the register, which is
36-bits wide.

The second register shown in Figure 6 is the same as the
first register, except that it has asynchronous “SET™ and
“RESET™ inputs in addition to the “DATA" and “CLOCK"
inputs. If either the “SET" or "RESET™ inputs are made to be
non-zero, then they control the operation of the register and the
setting or resetting of its output after the specified propagation
delay of the register.

EDGE TRIGGERED
O-TYFE REGISTER

EDGE TRIGGERED
0-TYPE REGISTER
WITH SET A0 RESET

38 28
REG = R REG RS
Rt s Rr2
L I P oureuT pata Y e T Qe
1.0,3.8 1.0,3.0
Figure 6

Two register models used by Timing Verifter,

LATCH LATOH HI™H
SET AND RESET INPUTS
228 320
LATCH g R LATCH RS
para e outeuT oATA M ouTRyY
Tomare T DELATa
N 1.8,3.5 1.0,3.6
N N
ENGELE ENBLE
Figure 7

Two latch models used by Timing Verifier,

The Timing Verifier has two models for latches, which
are shown in Figure 7. The “OUTPUT" of the first lacch
merely follows the “DATA" input when the "ENABLE" input
is high, and is stable for the remainder of the cycle The
second latch is the same as the first except for the addition of
the asynchronous "SET™ and “RESET™ inputs, which set or
clear the laich’ when the “ENABLE" input is low, after the

specified propagation delay.

'Assertions on Signals

In order to be abie to treat partially designed circuits, the
Verifier needs timing assertions on undeflned signals.
Undefined signals with no assertions are taken to be always
stabie, to prevent them from giving rise to numerous spurious
error messages. Two types of assertions are used for spedfying
clocks, and one is used for defining the behavior of control and
data signals.

There are two categories of clock signals: precision and
non-precision. The only difference between precision and
non-precision clock specifications is the default skew used when
none is explicitly given. Skew is generated by the variation in
the wire delay to the different parts of a large digital system
and by the variation in delay between the different buffers
used in the clock generation. In the design of a large digital

system, these variations can become quite large, and may

degrade performance unacceptably. To reduce this skew, the
shorter clock paths can have additional delay deliberately

inserted into them. Because the delays in a clock distribution

system may vary between successive implementations of a
design, in many cases it must be adjusted by hand, by using
some type of ad justable delay for each of the ciock lines. Using
this technique, the skew can be reduced to below some
designer-specified amount. In order to verify the timing in 2
design which has been so de-skewed, it is necessary to describe
how the clocks will be adjusted in detail within the design

specification. A number of features have been provided to
make this task as easy as possible, and will be described in this

and the next section.

If a clock signal is ad justed to some specified skew, then
an assertion can be given within the signal name denoting that
fact. Assertions are given at the end of signal names and are
preceded by a period. They are considered part of the signal
name by the rest of the SCALD system, which thereby
guarantees that all of the astertions for a given signal are
consistent.

The format for the assertions for the precision and -
non-precision clocks are

SIGNAL NAME .P <value specification> <skew specification>
and
SIGNAL NAME .C <value specification> <skew specification>

where

<value specification> == <time range> |

<time range> , <value specification>
<time range> == <time> | <time> - <time>
«<time> == <real number>
<skew specification> == | (<minus skew> , <plus skew>)
<minus skew> == <negative real or zero>

An example clock specification is
XYZ C+8L

which says that the signal goes from high to low at time 4, and

from low to high at time 6. The time units in which the clocks
are specified are normally some fraction of the cycle time. For
example, one eighth of the cycle is the basic clock interval used
in the design of the S-1 Mark IIA processor. Specifying clock
intervals as fractions of the cycle time (rather than in absolute
time units) aflows the refative timing within the design to be

scaled automatically if the cycle time is changed. The signal
XYZ C2-3.,5-8

is high from 2 to 3 and from 5 to 8, and is Jow for the rest of
the clock cycle. If a single time is given instead of a range, then
a time interval of one clock unit is assumed. For example,

XYZ C28
is equivalent to the previous signal

The type of assertion applicable to the behavior of
control and dara signals specifies when a given signal is stable,
and when it may be changing. Its general form is

SIGNAL NAME S <value specification>

For example, the name XYZ .S4-8 says that the signal is stable
from time 4 to time 8, and may be changing during the rest of
the cycle.

This type of assertion has several uses. First, it allows the
designer t specify his assumptions about when signals are
valid {ie, not changing) as he creates them in the design
process, and those assumptions will be used by the Verifier
until the signals are generated by hardware designed
subsequently. For signals so generated, the designers initial
assertion is checked against the timing of the actual generated
signal, and an error message is outputed if the assertion i3
thereby violated. In the design of the S-1 Mark IIA processor,
most signal names have stable assertions in them. This greatly
improves the readability of the logic, since a signal name very
explicitly includes a specification of when the associated signal
is valid.

Putting the stable assertion on interface signals is the key
to the ability to verify a design in sections. After each section is
verified, SCALD checks to see that the interface signals have
the same timing assertions. If no section has an error, and all
of the interface signals have the same assertions on them, then
the entire design must be free of timing errars.

Evaluation Directives .

Evaluation directives tell the Timing Verifier how
evaluate certain gates. They can also specify the exact point in
a cirenit at which a clock is ad justed to some specified time.

Because the Verifier is not doing full logic simulation on
a compieted design, it does not know the logic level of most
signals, but only whether the signais are stable or changing.
Consider the circuit shown in Figure 8. The clock signal "CK
P2-3 L" is being ANDed to the control signal “WRITE S0-6
L" to generate a write enable pulse for the RAM array. If the
data is stable every cycle during the period that the RAM I3 to
be written, then the most efficient way to check for timing
errors is just to analyze the case in which the signal "WRITE
50-6 L" enables a write. The “%H" directive shown at the end
of the clock signal says to ignore the value of the "WRITE

S0-6 L" signal, allowing the clock signal always to propagate
through the gate. In addition, it says the timing specified by
the clock signal is to be adjusted so that it refers to the time at
which the output, rather than the input, of the gate changes.
The “&H" directive also to check that the control
signal “WRITE S0-8 L® is stable during the period that the
clock is asserted, to ensure that the write will be either solidly
enabled or solidly disabled.

There are 2 number of different directives of the general
type of the “&«H" directive. For example, the “%Z” directive on
the signal “CK .P0-4" states that the clock timing refers to the
time at which the output of the gate changes If mukiple
directives are given after a signal, such as “&HZ", then the first
letter refers to the first level of gating and the second refers to
the second level of gating after the directive. There is no limit
on the length of a directive string.

DESIGN SPECIFICATION

Figure 8 shows a circuit example specified in the SCALD
Hardware Description Language. The drcuit consists of a
16-word by 32-bit RAM, a 32-bit register, a 2-input
multiplexer and several gates. This design description is
entered into the computer via an interactive graphic editor, and
forms the data base for driving the entire SCALD system.

A detailed description of the basic SCALD language can
be found in [2,3,4] and will not be repeated here. The main
points of interest to the Timing Verifier in Figure 3 are the
assertions on signals, evaluation directives, and the ication
of possible wire delays. The assertion on the signal "W DATA
50-6<0:31>" says that it is stable from time 0 to tme 6, allowing
the Verifier to check the timing of this circuit without knowing-
how the signal is generated. The assertion on the clock signal
“CK P2-3 L” says that it is low between times 2 and &, and
high for the rest of the cycle. The signal “ADR<0:3> [0.06.0T
states that the 4 address wires on the RAM can be between 0.0
and 6.0 nsec long. The evaluation directives “&H” and “%Z"
have already been described.

CHIP DEFINITIONS

For each chip used in a design, a definition of its timing
and logical properties are given in the SCALD Hardware
Description Language.

A chip is defined in terms of 2 set of primitive functions
which the Verifier understands. These primitives include
AND, OR, XOR, NOT, and CHANGE gates, registers, latches,
multiplexers, a set-up and hold checker, and a minimum pulse
width checker. Two typical chip definitions are shown in
Figures 9 and 10. Figure 9 shows the definition of a 10145A,a
16-word RAM. Figure 10 shows the definition of a 10158, a
2-input multiplexer. The 10145A model is a timing model
only. The “8 CHG” and *4¢ CHG"” gates are CHANGE gates,
which output the vaiue CHANGE when any of their inputs
change, and output the value STABLE the rest of the time.
Using CHANGE gates has been found to be invaluable in
modeling complex functions for which knowledge of the exact
logical operation is unnecessary. The model for the 10158, on
the other hand, is an accurate model, which couid be used to do
full logic simulation. For the 10158, the model of its complete
logical operation is necessary to verify timing constraints in
many circuits.

\
H DATA .S8-4¢@:21>

RAM% 9: 31>

HRITE AOR . 90-&<0; D>

RERD AOR .84-% 0D

T OUTPUTC@: 31>

REG QX

X _.P4-g
oK .P2-3 L &M
S jetosa
WRITE .58-6 L o L
S-1 EXAMPLE MACRO DEFINITION 29- JAN- B2 20:37[
PROJECT EXAM MK2, S1]
[DRAWN BY: PAGE _ 1 _OF 1 ReU.
APPROVED BY: PROJECT : EXAMPLE
Figure 8
Example circuit to be verified.
OELAY=1.5,3.0
oL W
A A
S ! 4 c?“ o0 [@] M
D P DELAY-3.8, 6.0 DELAT-8. @
_:\ stzn
cs » 106 T M IST M w1 ar
E P] e / 63 T SIZE-1b -
(s12D
SETUP HOLD O
LosIZE-1»_m PeRrETER oeFINE MANFRCTURER
SETUP«4, 54
HLD =-1.0 Te81812E-1> X STEP = SI1ZE F
® L
i L
>
18
SETUP HOLD OMK TCOISIZE-1> A
cs P . s2
SETUPw4.6;
HOLD 3.6
[+
- \E AP]
L)
SETUP RISE
R P tm.n F;;.l_ [« 4
ENPe.5: MIN PLLSE WID™
HOLD =1.0 1 u
o HIGH=4,9;
_E p T l—— LOM 0.0
8-1 164 RAM 1@145A 29- JAN-680 20: 37
PROJECT 101450 Mk2, $1]
DRAWN BY: PRGE 1 OF 1 REV.
APPROVED B8Y: PROJECT: TIMVER
Figure 9

Definition of the 10145A, a 16-word random access memory chip (RAM).

PORFMETER OEFINE
1812 1> X STEP « SIZE
1¢@:SIZE- 1>

s
Tc@1S12E- 1>

HOSIZE-1» A

140 S12E-1» A~

DELAY=8.3, 1.2

T<9:8126-1> +

S-1
. PROJECT

10158 29-JAN-80 29:37]

10158[MK2, S1]

Values of all signais
ADRCO:3> . B . .
CK .PO-4
CK .p2-3 . .

CK .P4-8 .
OUTI’U’I‘(O:31>

AMK®:51>

READ ADR 1S4-9¢0:3>.

REG B .
:bDATA MO 3 . .

WRITE .S8-6
WRITE ADR .S0-6<@:35

Setup, lold and Minimum Polse Width errors

Soluﬁ time or;gr' Setup Time = 3.5, Hold Time = 1. 0
DATA lNPU'l‘ = ADR
Sohn time error;
CK NP = REG
DATA INPUT = RAN

DRALN BY: PAGE 1 OF REU.
APPROVED BY; PROJECT: _ TIMER
Figure 10

Definition of the 10158, a 2-input multiplexer chip.

255255555899

SPEIIISIODDP

nuoumnnEeRn

Figure 11

c S:§.5, C:25.5, $:30.5

1 P:24 b 8:26.0, R:49.0 (coastuat velue)
R v 1:13.8, F:17.8, 0:19.8 (consltant valwe)
] l:24.0. 1:26.8, F:149.0 (ocoastanti valwe)
[5:7.5

[$:28.5, C:30.0, S:45.5

c $:25.

cl F:24.0, 9:26.9, R:49.8

(l: .5, 1:13.5, F:17.8, 0:19.8

é:

Output from the Timing Verifier, showing values of signals.

9.0)
(‘-O o)

Setup Time » 2.5, Hoid Time = |. 5

Figure 12

.5, 1:15.S, F:17.8, 0:21.8
5,'s:11, S, C:28.5, s: .S

@we
e

iz
(3
G

Set-up and hold errors found by the Timing Verifier.

WIRE DELAY ESTIMATES AND CALCULATIONS

Before the actual wire delays are known, the Timing
Verifier uses a set of rules to estimate them, except where they
have been specified by the designer. After the actual routing of
the wires and the simulation of their transmission line
properties has been completed by the SCALD Physical Design
Subsystem [3,4], accurate wire delays are available. These are
then fed back into the Timing Verifier, which does a detailed

check of the timing of the design.
CIRCUIT VERIFICATION EXAMPLE

Figures 11 and 12 show the results of running the cirauit
shown in Figure 8 through the Timing Verifier, with a
specified cycle time for the circuit of 50 nsec, and a defauk wire
delay of 0 to 2 nsec. Figure 11 gives a complete listing of afl of
the signals, showing their value as a function of time. Consider
the first signal in the list, “ADR<0:3>". It has the same value
for all of its bits, and s0 has only one value given. It is stable
at the beginning of the cycle, and starts changing 0.5 nsec into
the cycle. It is then changing from 0.5 nsec to 5.5 nsec, at which
point it goes stable until 255 nsec. It is then changing from
285 nsec into the cycle until 30.5 nsec. It then goes stable from
30.5 nsec until the end of the cycle.

Figure 12 lists the set-up and hold time errors. Because
of the long wire specified on the signal "ADR<0:3> [0.08.07",
two setup time errors are generated. The first error message
shows the address on the RAM just going stable at time 11.5,
the same time as the write enable (WE) signal starts rising.
Since a RAM requires a setup time of 3.5 nsec, the wire delay
on the address signal must be reduced to 2.5 nsec in order
eliminate the error. The second error listed shows the
data being read out of the RAM going stable at time 47.5 nsec,
and the clock starting to rise at tme 49.0 nsec, giving only LS
nsec of set-up time instead of the required 2.5 nsec.

CORRELATIONS WITHIN DIGITAL SYSTEMS

Consider constructing an 8-bit shift register using two
4-bit shift register chips. The shift output of one chip must be
connected to the shift input of the other chip. If the minimum
delay from the clock to the shift output is not greater than the
hold time on the shift input by at least the maximum skew
possible between the two clock inputs, then there is a timing
problem. The key to verifying this timing constraint is to
calculate the maximum skew between the two clock inputs,
taking into account any correlations within the circuit.

Now consider the case where there is a large amount of
skew on the time at which the clock signal will occur, but that
the two clock inputs are wired together with a short wire The
skew that each chip sees is large, but the maximum possible
skew between the two inputs is quite small, because of the
correlation between the two clock inputs. To analyze this case
correctly, the Verifier needs to understand the correlation
between the two clocks. The approach that the Timing Verifier
has taken is to make the designer explicitly declare this
correlation in the design specification, relieving the system of
the burden of automatically finding it Since this type of
correfation tends to occur in only a few simpie SCALD marvos
(defining itemns such as shift registers and counters), it a
small burden to have to declare when a circuit is depending on
such a correlation to in order work properly.

VERIFICATION OF THE S-1 MARK [IA

The Timing Verifier has been used to check all of the
timing constraints in the S-1 Mark IJA processor design. The
design was checked in two parts, consisting of the instruction
and operand preparation unit and the instruction execution
unit Each of these units consists of approximately 5000 MSI
and LSI ECL chips. The verification of one of these mnits
takes about 15 to 20 minutes of execution time and uses 8 to 8
megabytes of storage on the S-1 Mark I processor. The Mark I
processor is the first generation S-1 processor which was
designed with SCALD, and is comparable in performance to an
IBM 370/168.

The verification of the timing constraints proceeded on 2
daily basis during the S-1 Mark IIA design process. Each day
the Timing Verifier was used to find any timing errors which
might have been introduced into the design during that days’s
work. This procedure allowed errors to be found and fixed as
they were introduced into the design, before their effects could
propagate significently throughout the design. This early,
nearly continuous feedback was found to be invaluable in
timely completion of a design with a high degree of confidence
in its operability at full speed.

CONCLUSIONS

The SCALD Timing Verifier has been a very efficient
way of discovering timing errors in the design of large digital
systems. It is highly cost-effective from the standpoint that it
requires little effort from the designer beyond what is required
to execute the basic design. It is also computationally efficient,
allowing a large design to be verified in a relatively small
amount of computer time and memory.

Once the timing constraints have been verified, then a
simple logic simulator, one which does not have to worry about
any timing problems, can find the reiatively probable logic
errors. The improbable logic errors can then be found either
by a hardware simulator or a prototype. The timing in both
the prototype and the final production implementation can then
be checked with the Timing Verifier.

ACKNOWLEDGMENTS

I would like to thank Forest Baskett and Bill
vanCleemput for the constant support and guidance they have
provided throughout the course of this research. The Fannie
and John Hertz Foundation's gracious support has provided me
the freedom to pursue this research. Bill Bryson, Mike
Farmwald, and Jeff Rubin have been the first users of the
SCALD Timing Verifier and their patience and many
suggestions for improvement are most appreciated. My thanks
also go to the Office of Naval Research and the Naval
Electronics System Command for the support to the S-1 Project
which has provided the environment for this
research, and to Curt Widdoes and Lowell Wood, whose tireless
efforts made the formation of the S-1 Project possible.

This work was in part performed under the auspices of

the US. Department of Energy by the Lawrence Livermare
Labaratory under contract No. W-7405-ENG—48.

7

REFERENCES

1. Kusik, R. and Wesley, P. "Hierarchical Logic Simulation for
Digital Systems Development,” Proc. Electro/76, Boston,
Mass, May 1976, pp. 26.3.1-26.38

2 McWilliams, TM. and Widdoes, L.C, “SCALD: Structured
Computer-Aided Logi Design,” Proceedings of the
Fifteenth Design Automation Conference, Las Vegas, Nev,
June 1978, 271-277.

3. McWilliams, TM. and Widdoes, LC, “The SCALD
Physical Design Subsystem,” Proceedings of the Fifteenth
Design Automation Conference, Las Vegas, Nev, June 1978,
278-284.

4. S-1 Project Staff, "Advanced Digital Computing Technology
Base Development for Navy Applications: The S-1 Project,”
Prepared for the Naval Systems Division, Office of Naval
Research and the Research and Technology Directorate,
Naval Electronics Systems Command, September 30, 1978
(UCID-180%8)

5 Szygenda, SA., “TEGAS2—Anatomy of a General Purpose
Test Generation and Simulation System for Digital Logic,”
Proceedings of the ACM IEEE Design Automation
Workshop, June, 1972, 116-127.

6. Wold, MA, “Design Verification and Performance Analysis®,
Proceedings of the Fifteenth Design Automation Conference,
Las Vegas, Nev, June 1978, 264-270.

NOTICE

This report was prepared as an account of work sponsored by the United
States Government. Neither the United States nor the United States
Department of Energy, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, makes any warranty,
express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness or usefulness of any information, apparatus,
product or process disclosed, or represents that its use would not infringe
privately-owned rights.

Reference to a company or product name does not imply approval or
recommendation of the product by the University of California or the U.S.
Department of Energy to the exclusion of others that may be suitable.

